Laserlipolysis: update and literature review

ABSTRACT
Laser lipolysis is a therapeutic modality that is currently used to treat localized fat and promote cutaneous retraction. Compared to conventional liposuction, removing fat using laser lipolysis has a shorter post-operative recovery time and fewer adverse effects. Applying laser directly to adipose tissue causes fat liquefaction, blood vessel coagulation and collagen denaturation. The thermal damage induces neocollagenesis and skin contraction. The technique’s safety is well documented. This study reviews the literature on laser lipolysis and describes its current status.

Keywords: lasers; lipolysis; subcutaneous fat; collagen.

INTRODUCTION
The laser lipolysis technique has been used for over a decade to treat localized fat to promote skin tightening and to reshape the body’s contour. It is one of the more frequently used procedures in the United States in liposculpture, which is performed by roughly 10% of plastic surgeons. 1, 2

Laser lipolysis comprises the subcutaneous application of laser under tumescent anesthesia in the treated area of the body, with or without the subsequent aspiration of molten fat. When in direct contact with the subcutaneous tissue, the energy relea-
Laser lipolysis

Laser lipolysis is a technique that uses laser energy to melt fat cells, also known as adipocytes. It has been used as an alternative to traditional liposuction and laser lipolysis has been reported to have several advantages such as shorter recovery time, milder surgical trauma, decreased blood loss, as well as less pain, bruising, and post-surgical swelling. In addition, it allows a greater emulsification of fat with less thermal damage to the skin. The use of laser energy in lipolysis is based on the principle of selective photothermolysis, which allows the laser to target specific tissues based on their optical properties.

LIPOSUCTION AND PRECURSORS

The introduction of tumescent liposuction in the 1990s resulted in lower rates of complications than traditional liposuction, which is carried out under general anesthesia. Additional advantages included a reduced risk of bleeding and ecchymosis and faster post-operative recovery, without the need for hospitalization. Tumescent anesthesia, as described by Klein, is a buffered solution containing 500–1,000 mg lidocaine, 1mg epinephrine, and 12.5 ml of 8.4% sodium bicarbonate in one liter of saline solution. The presence of epinephrine, as well as the great volume injected, promotes local vasoconstriction and decreases intra-operative blood loss. Tierney and colleagues published a review article about the safety of tumescent anesthesia in liposuction and laser lipolysis in 100,000 treated areas of the body. There were no systemic complications, and the risk of local complications was very low.

In 1992, Zocchi introduced ultrasound in tumescent liposuction. Ultrasound was applied prior to aspiration in order to emulsify the fat. An enhanced technique of that approach, the VASER (Vibration Amplification of Sound Energy at Resonance), allowed a greater emulsification of fat with less applied energy. However, side effects such as large seromas and damage to peripheral nerves discouraged the use of this technique. Ultrasound-assisted liposuction or low-potency lasers used externally showed no evidence of better results, and had restricted applications.

LASER LIPOLYSIS: FIRST REPORTS IN THE LITERATURE

Between 1992 and 1996, Apfelberg published the first studies on laser lipolysis using the neodymium yttrium aluminum garnet laser (Nd:YAG) inside the liposuction cannula. At first there was no evidence that this approach was superior to tumescent liposuction.

In 2002, Goldman and others described their experience with more than 1,700 patients, demonstrating the effects of thermal energy released by laser lipolysis using a 1,064 nm Nd:YAG pulsed laser. That laser uses a 300 um-thick optical fiber contained within a 1 mm microcannula. Unlike in the work of Apfelberg, the optical fiber was extended about 2 mm at the distal end of the cannula so that it could be in direct contact with the adipose tissue and small blood vessels. The authors were the pioneers in demonstrating the effects on adipose tissue, adjacent dermis, vasculature, and eccrine and apocrine glands.

At the same time, Badin and colleagues studied the histological alterations caused by the laser, finding ruptures in the membranes of adipocytes, coagulated blood vessels, and denatured collagen fibers in reorganization. Those findings were similar to the clinical response (removal of localized fat, less intra-operative bleeding, less ecchymosis, in addition to obtaining the skin-tightening effect).

In October 2006, based on a more robust scientific basis, the US Food and Drug Administration approved the use of the first laser (1,064 nm Nd:YAG) for performing laser lipolysis, incision, excision, vaporization, ablation, and coagulation in soft tissues. Several studies have been published since then, contributing to a greater understanding of the technique and the technological advancements.

LASER LIPOLOGY PRINCIPLES

Laser lipolysis’ mechanism of action is based on the classic principle of selective photothermolysis. The internal system of controlled energy aims to reach two chromophores: fat and collagen. The direct exposure of the target tissue to the laser results in selective thermolipolysis and the thermal denaturation of collagen fibers, which maintains the septal architecture and contributes to the increase in cutaneous retraction.

Subcutaneous tissue fat has an optical absorption coefficient estimated between 400 and 1,500 nm. Collagen’s optical absorption coefficient is similar to that of water and thus increases in direct proportion to the wavelength. Graph 1 depicts the curves of optical absorption of human fat and water (collagen); the coefficients of absorption of fat and water peak at different wavelengths.

The thermal factor is the main cause of adipocytolysis and contraction of the skin. The fat (liquefied due to the rise in temperature of the adipocytes) depends on the total energy accumulated in the treated area. Therefore, given that the result of the lipolysis and stimulation of collagen depends on the amount of thermal energy accumulated in the tissue, some studies suggest monitoring the temperature during laser lipolysis.

The external temperature must remain between 40°C and 42°C not only for greater effectiveness, but also to prevent burns. The internal temperature must reach 48-50°C in order to cause irreversible adipocytolysis and denaturation of the adjacent collagen, with the resulting stimulation of neocollagenesis.

Histological studies have confirmed the clinical benefits resulting from the laser’s action in the skin, including the destruction of adipocytes, the remodeling of collagen, and the coagulation of blood and lymph vessels.

Tumescent adipocytes were observed with the use of low-
energy laser, whereas the use of high-energy laser led to cyto-plasmic retraction, membrane destruction, and coagulation of collagen and blood fibers. Even higher levels of energy produced fat tissue carbonization involving fibers and membranes. 20,21

Several types of laser and different wavelengths have been used in laser lipolysis. Photoacoustic, photothermal, and photo-mechanical effects are theoretical mechanisms of action typical of the method. 5

Regardless of the wavelength used, however, the thermal damage caused by the heat seems to be responsible for the beneficial effects of the method. 20 In 2008, Mordon and colleagues described a mathematical model for laser lipolysis based on 980 nm diode laser and 1,064 nm Nd:YAG. The studies suggest that the heat level attained – which depends on the accumulated energy – is more important than the wavelength used for reducing fat and promoting the retraction of the skin. 20

THE TECHNIQUE

Laser lipolysis is an outpatient procedure performed without the need for hospitalization. Laboratorial investigation, with complete blood count, laboratory tests for clotting and liver function, electrolytes, beta-HCG for women of childbearing age, and serology for hepatitis B, C, and HIV must be requested. 1

Pictures and marking of the treatment areas must be carried out with the patient in standing position. The tumescent local anesthesia is administered through a 1–2 mm incision, in an outpatient surgical room. A 1 mm microcannula containing the laser optical fiber is then inserted into the subcutaneous plane, and is moved back and forth, parallel to the surface, at an average speed of 5 cm/s, 10–15 times in each area. 4

A light emitted by the laser in the hand piece’s tip guides the execution of the procedure through the skin’s transparency (Figure 1). During the procedure, one hand moves the cannula while the other is placed on the treated surfaces in order to immobilize the tissue, to gauge the local temperature, and to pinch the skin in order to assess the softening of the subcutaneous layer.

After the use of the laser, the liquefied fat is usually aspirated with a small-diameter cannula using negative pressure. In some cases, only manual drainage is performed. In the treatment of sagging, aspiration is not necessary.

Antibiotics and analgesics are prescribed, and patients are instructed to use compression bands specific to each treated area for 15–30 days, and to avoid exposure to the sun for a month. Physical activity should be avoided for one week, and complementary physiotherapy sessions are recommended. The patients must be followed up in the first and third months after treatment to evaluate the results.

WAVELENGTHS

The development of lasers with other wavelengths suggests the existence of more specific lengths for targeting fat and collagen chromophores, although this is still scientifically unproven. The various types of lasers used in laser lipolysis are shown in Table 1.

There is no consensus, however, regarding the best and most specific wavelength for laser lipolysis, since the fat and collagen absorption coefficients vary greatly regarding that parameter, as already seen. In recent years, lasers with two or three combined wavelengths have been developed in an attempt to optimize results.

In 2010, Wassmer and colleagues compared lasers with different wavelengths (920 nm, 980 nm, 1,064 nm, 1,320 nm, and

Figure 1: Laser lipolysis in the lateral abdominal region. Note the light emitted by the laser handpiece’s tip serving as a guide in the site of application
1,440 nm) and concluded that the tissular penetration was similar among those with wavelengths between 900 nm and 1,320 nm (approximately 1.5 mm). The volume of fat destroyed was similar at wavelengths of 920 nm and 1,320 nm. For every 4 cm³ of molten fat, the average accumulated energy used was 3,750 J. ¹

Tark and others presented superior lipolytic results in the skin of pigs with 1,444 nm Nd:YAG laser, compared to those obtained with 1,064 nm. ²² Weiss and Beasley studied the effects of two laser wavelengths (924 nm for fat, 975 nm for collagen) in 19 patients, obtaining 100% good and excellent results. ²³ Reszko and others concluded that the 1,320 nm Nd:YAG laser caused greater dermal coagulation compared to the 1,064 nm laser. ¹

DiBernardo and colleagues evaluated and compared the effects of 1,064 nm and 1,320 nm lasers (combined and in isolation) on localized fat and dermal collagen, concluding that the histological damage was correlated with the temperature reached, regardless of the wavelength. The authors suggest that external temperatures higher than 42ºC are linked to undesirable epidermal damage. ¹⁶

In a similar study, Woodhall and others compared the effects of 1,064 nm and 1,320 nm Nd:YAG lasers in isolation and combined; the latter showed superior clinical results. ²⁴

INDICATIONS AND APPLICATIONS

The main indications for laser lipolysis are the removal of localized fat that is resistant to physical exercise and diets, and the correction of mild to moderate sagging. The treatment’s goal is to improve the definition of the body’s contour. In the literature, there are recent reports of other applications of laser lipolysis, such as the treatment of lipomas, axillary hyperhidrosis, gynecomastia, facial sagging, and cellulite.

Patients who are in the normal range of body mass index have the ideal profile for treatment. They must be well informed about the technique and the time required to obtain the expected results, which generally occurs three months after the procedure. ²² Those patients should preferably be less than 60 years of age, and not have uncontrolled cardiovascular disease, hypertension, diabetes, or a liver condition. Anticoagulants, anti-inflammatory drugs, or medications that alter the metabolism of lidocaine are contraindicated. ⁵

LOCALIZED FAT AND MILD TO MODERATE SAGGING

The treatment of localized fat to improve the definition of the body’s contour is the first indication of laser lipolysis – similar to that of tumescent liposuction. The regions most frequently treated using this technique are the abdomen, waist, outer thighs, submentonian and submandibular regions, inner thighs, knees, arms, and back.

Some studies have measured the skin retraction associated with the use of laser, which has led to a fast expansion of this technique in the United States. ¹⁵,²⁵ The experience amassed in recent years has yielded further information about optimizing the parameters used, as well as the degree of improvement that can be achieved.

Reynaud and colleagues have calculated the average accumulated energy per region of application of 980 nm diode laser, after analyzing 534 procedures. ²⁶ Table 2 shows the mean values, as well as the minimum and maximum values applied to each body region, as a guideline for the surgeon.

Figures 2 and 3 demonstrate three cases of patients who were treated for fat and sagging with 924/975 nm diode laser-based laser lipolysis.

OTHER INDICATIONS

Gynecomastia

The first study reporting laser lipolysis as an option in the treatment of gynecomastia was published in 2002 by Goldman and colleagues. ³ The authors found that laser lipolysis presented more efficacy in more fibrous areas – as is the case with traditional liposuction in gynecomastia.

In 2009, Rho and others applied 1,064 nm Nd:YAG laser in five patients with unilateral gynecomastia and compared the results with the untreated side. The applied accumulated energy ranged from 1,800-2,500 J. There was a reduction in chest cir-

Table 1 – Lasers used in the United States for laser lipolysis

<table>
<thead>
<tr>
<th>Laser</th>
<th>System</th>
<th>Wavelength</th>
<th>Year of approval by FDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmartLipo: Cynosure</td>
<td>Nd:YAG</td>
<td>1064 nm</td>
<td>2006</td>
</tr>
<tr>
<td>SmartLipo MPX: Cynosure</td>
<td>Nd:YAG</td>
<td>1064/1320 nm</td>
<td>2008</td>
</tr>
<tr>
<td>SmartLipo Triplex: Cynosure</td>
<td>Nd:YAG</td>
<td>1064/1320/1440 nm</td>
<td>2009</td>
</tr>
<tr>
<td>CoolLipo: CoolTouch</td>
<td>Nd:YAG</td>
<td>1320 nm</td>
<td>2007</td>
</tr>
<tr>
<td>LipoLite: Syneron</td>
<td>Nd:YAG</td>
<td>1064 nm</td>
<td>2008</td>
</tr>
<tr>
<td>Lipotherm: Osyris</td>
<td>Diodo</td>
<td>980 nm</td>
<td>2008</td>
</tr>
<tr>
<td>SlimLipo: Palomar</td>
<td>Diodo</td>
<td>924/975 nm</td>
<td>2008</td>
</tr>
<tr>
<td>SmoothLipo: Eleme</td>
<td>Diodo</td>
<td>920 nm</td>
<td>2008</td>
</tr>
<tr>
<td>ProLipo: Sciton</td>
<td>Nd:YAG</td>
<td>1064/1319 nm</td>
<td>2009</td>
</tr>
<tr>
<td>AccuSculpt: Lutronic</td>
<td>Nd:YAG</td>
<td>1444 nm</td>
<td>2010</td>
</tr>
</tbody>
</table>

*FDA: Food and Drug Administration, EUA.
region average accumulated energy (min-max)

<table>
<thead>
<tr>
<th>Region</th>
<th>Average accumulated energy (min-max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdomen</td>
<td>24,600 J (6-51 kJ)</td>
</tr>
<tr>
<td>Outer thighs</td>
<td>14,600 J (2.2-31 kJ)</td>
</tr>
<tr>
<td>Waist</td>
<td>9,500 J (4-19 kJ)</td>
</tr>
<tr>
<td>Posterior face of the thighs</td>
<td>13,100 J (4-25 kJ)</td>
</tr>
<tr>
<td>Inner thighs</td>
<td>10,400 J (4-20 kJ)</td>
</tr>
<tr>
<td>Submandibular</td>
<td>11,700 J (6.6-16 kJ)</td>
</tr>
<tr>
<td>Arms</td>
<td>12,800 J (4.7-17 kJ)</td>
</tr>
<tr>
<td>Inner knees</td>
<td>8,100 J (2.7-20 kJ)</td>
</tr>
<tr>
<td>Back</td>
<td>21,900 J (11-35 kJ)</td>
</tr>
</tbody>
</table>

LIPOMAS

Lipomas are benign, yet large tumors that require excisional surgeries that result in unattractive scars. Laser lipolysis has been described in three recent articles in the literature as a treatment for large cutaneous lipomas. In 2009, Goldman and Wollina evaluated 20 patients who underwent laser lipolysis with 1,064 nm Nd:YAG pulsed laser, followed by aspiration. All patients had the tumor removed, and there were four partial recurrences that required a repeat of the same procedure, with therapeutic success. In 2010, Saluja described the use of laser with two wavelengths in the treatment of giant lipomas with a post-procedure scar of 1.5 mm. Likewise, in 2011 Stebbins and others described two patients whose lipomas were successfully treated with laser lipolysis (the largest measuring 12 x 8 cm, located on the back).

The authors describe a patient who underwent treatment for a large lipoma on the back, using laser lipolysis with 924 nm laser diode, 20 W fluence, and an accumulated energy of 15,000 J. Figure 5 illustrates the primary lesion and the final result one month after two laser applications.

AXILLARY HYPERHIDROSIS AND OS MIDROSIS

The number of reports describing laser lipolysis in the treatment of axillary hyperhidrosis or osmidrosis has been increasing in the last few years. In 2006, Ichikawa and colleagues...
reported the subdermal use of 1,064 nm Nd:YAG laser in 17 osmidrosis cases for ablating sweat glands. Twelve patients were monitored six months after the procedure, with good to moderate responses in all cases. Treatment areas were divided into 2 cm squares, each of which received 200-300 J of accumulated energy. In 2008, Goldman and Wollina described the clinical and histological outcomes of the application of subdermal 1,064 nm Nd:YAG laser in 17 patients with difficult-to-control hyperhidrosis. Treatment areas were established using Minor’s iodine test and received 7,000-20,000 J of total accumulated energy. All patients presented a significant and lasting decrease of hyperhidrosis, with excellent outcomes in 10 patients. There was a recurrence of symptoms in only one patient five months after the procedure. Histology of biopsies performed after the procedure showed necrosis and collapse of the eccrine glands.

In 2011, Kotlus reported the case of a patient with hyper-resistant axillary hyperhidrosis who underwent subdermal 1,320 nm Nd:YAG laser. The improvement was considered satisfactory. More recently, Kim and colleagues described the use of sub-dermal 1,064 nm Nd:YAG laser in osmidrosis (n = 29) with a 12-month clinical follow-up. Nineteen patients responded well, but 10 patients presented poor results. Each 2 cm square received 300-500 J of accumulated energy. There were also three cases of second-degree epidermal burns. The authors observed improvement only in milder cases of osmidrosis.

FACIAL CONTOUR AND SAGGING

In a review article on laser lipolysis, Sasaki and Tevez described its application in facial and body contour procedures, highlighting the effectiveness and safety of the technique using the 1.064/1.320 nm Nd:YAG laser. In Asia in 2009, Sun and others reported a case of congenital adiposity in the face of a 19-year-old female patient, who was treated with subdermal 1.064 nm Nd:YAG laser with a good
outcome and an absence of damage in the peripheral nerves. Holcomb and colleagues published a case study of 478 patients who underwent laser lipolysis for rejuvenation and to define the facial contour with 1,444 nm Nd:YAG laser. There were good results in the correction of the middle and inferior thirds of the facial contour.

Aiming to promote face lift based on the skin-tightening effect, in 2011 McMenamin obtained good outcomes with 1.064/1.319 nm and 1.064/1.320 nm Nd:YAG lasers in facial contour procedures in 40 patients.

CELLULITE

Gynoid lipodystrophy – or cellulite – is a common aesthetic disorder that is difficult to treat. It is characterized by the presence of fibrous bands in the adipose tissue and herniations of the fat lobes toward the dermis. Several surgeons have noted an improvement in cellulite after laser lipolysis.

In 2008, Goldman and others reported positive effects of laser lipolysis combined with autologous fat transplant to treat 52 patients with Curri cellulite grades III and IV.

In 2011, DiBernardo used the 1.440 nm pulsed laser to treat cellulite in 10 patients. The elasticity and skin surface were assessed using specific equipment at baseline and after one, three, six, and 12 months. The results were positive, with an improvement in the skin’s irregularity and elasticity; the effects lasted for one year after the treatment.

This article describes the authors’ treatment of cellulite (Curri grade III) in the gluteal region using a 924/975 nm diode laser, with a good clinical response (Figure 6).

EFFECTIVENESS

The efficacy of laser lipolysis is comparable to that of tumescent liposuction, with the additional benefit of promoting skin retraction in the treated area. Table 3 shows the most relevant clinical studies on laser lipolysis, indicating the treatment area, the type of laser used, and the main results.

The best results are obtained in small and compact areas. Good results were also obtained in the correction of irregular-
ties from previous liposuctions. The skin-tightening effect promoted by laser lipolysis is the primary benefit that distinguishes this approach from tumescent liposuction. Although some authors are skeptical about the benefits of laser lipolysis over liposuction, recent comparative studies demonstrated statistically significant results in the retraction effect compared to techniques that do not employ lasers.

In 2010, DiBernardo published a randomized study on the effects of 1.064/1.320 nm laser-based laser lipolysis versus tumescent liposuction in the abdomen of 10 patients. Each patient received one treatment on each side of the abdomen; a blinded evaluator compared the skin contraction in the treated areas. Three months after treatment, the cutaneous retraction in the side that received the laser application was statistically significantly higher (54%).

In 2001, Goldman and colleagues compared the skin-tightening effect of 1.064 nm laser-based laser lipolysis versus tumescent liposuction in the arms of 28 patients. Half of the patients were treated with laser lipolysis followed by aspiration, while the other 14 patients received tumescent liposuction only. Independent observers found an average skin retraction of 11.4%, which was statistically greater with the use of laser.

The rate of patient satisfaction is high in all published clinical studies. Almost all patients reported that they would undergo the procedure again. Unsatisfactory clinical results were generally associated with low levels of accumulated energy, patients’ high expectations, and improper indications of the technique. In 2008, Katz and others described a re-treatment rate of 3.5% – an index lower than that of conventional liposuction.

The skin-tightening effect promoted by laser lipolysis is the benefits of laser lipolysis over liposuction, 8 recent comparative studies demonstrated statistically significant results in the retraction effect compared to techniques that do not employ lasers.

In 2009, Yu and colleagues reported a case of bilateral palpebral burn after laser lipolysis with diode laser for blepharoplasty. In 2009, Reynaud and others retrospectively evaluated 534 cases and did not observe any cases of burns, infections, hypopigmentation, persistent hematomas, or edemas. Patients resumed their routine activities one and a half days after the procedure. A week later, 83% of patients did not report pain or discomfort.

In 2012, Kim and others reported three cases of burns after axillary laser lipolysis in the treatment of 29 patients with osmiodrosis. One hypothesis for the high incidence of adverse effects in this study was the high level of accumulated energy used by the authors (up to 500 J/2 cm2).

The narrow range of treatment comprised between 38°C and 42°C – the range in which laser lipolysis is active – is a subject that deserves attention. An excess of energy in a single area can cause burns to the skin, especially in areas where the dermis is thinner, such as the armpits, face, and neck.

As is the case with any technology that relies on human experience, there is a learning curve in laser liposuction. Unsatisfactory outcomes result primarily from an excessively low level of applied energy or insufficient accumulated energy in the treated area.

Large areas of the body should not be treated in a single procedure. Best results are obtained when treating small and compact areas.

The treatment duration compared to that of tumescent liposuction is longer, although according to several studies, the technique requires less mechanical effort from the surgeon. Finally, the high cost of the equipment can be a drawback to its use.

Perspectives

Advances and refinements in the laser lipolysis technique point to the new lasers with wavelengths that can optimize the lipolysis and stimulate neocollagenesis, with a lower risk of adverse effects.

The most recently approved lasers have added measures that increase their safety, featuring internal temperature gauges and motion sensors that prevent the use of excessive energy in a given area, thus reducing the risk of burns and ecchymosis.

Furthermore, smart systems will correlate the total energy applied with the reduction in the volume of fat and the dermal denaturation, determining the optimum fluence to use with minimal epidermal destruction.

Anderson and colleagues observed that there is greater selectivity for fat in the 1,210 nm wavelength. Therefore, new lasers can be designed to ensure greater specificity for different chromophores.

Conclusions

Laser lipolysis is an effective and safe therapeutic option in the treatment of localized fat and sagging skin. The use of the technique is increasing, nonetheless it is not expected to replace traditional liposuction.

Laser lipolysis relies on the laser’s thermal properties as its...
Table 3: Key clinical studies in laser lipolysis

<table>
<thead>
<tr>
<th>Author</th>
<th>Treated area</th>
<th>Laser</th>
<th>Patients</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goldman 2002</td>
<td>Multiple areas</td>
<td>1,064 nm Nd:YAG</td>
<td>1734</td>
<td>Safe, effective, and more frequently recommended than liposuction in fibrous areas</td>
</tr>
<tr>
<td>Badin 2002</td>
<td>Multiple areas</td>
<td>1,064 nm Nd:YAG</td>
<td>245</td>
<td>Histology corroborates clinical findings</td>
</tr>
<tr>
<td>Prado 2006</td>
<td>Multiple areas</td>
<td>1,064 nm Nd:YAG</td>
<td>25</td>
<td>Benefits equivalent to those of traditional liposuction</td>
</tr>
<tr>
<td>Kin 2006</td>
<td>Multiple areas</td>
<td>1,064 nm Nd:YAG</td>
<td>30</td>
<td>Results are promising and replicable</td>
</tr>
<tr>
<td>Goldman 2006</td>
<td>Submentonian</td>
<td>1,064 nm Nd:YAG</td>
<td>82</td>
<td>Histology shows effectiveness in adipocytolysis and in collagen denaturation</td>
</tr>
<tr>
<td>Ichikawa 2006</td>
<td>Axillary osmidrosis</td>
<td>1,064 nm Nd:YAG</td>
<td>17</td>
<td>Total or partial improvement in all patients</td>
</tr>
<tr>
<td>Goldman 2008</td>
<td>Cellulite</td>
<td>1,064 nm Nd:YAG</td>
<td>52</td>
<td>84.6% good and excellent results</td>
</tr>
<tr>
<td>Goldman 2008</td>
<td>Axillary</td>
<td>1,064 nm Nd:YAG</td>
<td>17</td>
<td>83.0% good results; glandular collapse in the histology</td>
</tr>
<tr>
<td>Katz 2008</td>
<td>Multiple areas</td>
<td>1,064 nm Nd:YAG</td>
<td>537</td>
<td>No systemic complications; 4 burns and 1 local infection</td>
</tr>
<tr>
<td>Woodhall 2009</td>
<td>Arms</td>
<td>1,064 nm Nd:YAG</td>
<td>8</td>
<td>Benefits equivalent to those of traditional liposuction</td>
</tr>
<tr>
<td>Rho 2009</td>
<td>Gynecostasia</td>
<td>1,064 nm Nd:YAG</td>
<td>5</td>
<td>CT and US demonstrated decrease</td>
</tr>
<tr>
<td>Dudelzak 2009</td>
<td>Arms</td>
<td>1,064 nm Nd:YAG</td>
<td>20</td>
<td>Benefits equivalent to those of traditional liposuction</td>
</tr>
<tr>
<td>Sun 2009</td>
<td>Multiple areas</td>
<td>1,064 nm Nd:YAG</td>
<td>35</td>
<td>More fibrous tissues need more accumulated energy</td>
</tr>
<tr>
<td>Reynaud 2009</td>
<td>Multiple areas</td>
<td>980 nm diode</td>
<td>334</td>
<td>Very high patient satisfaction; fast post-operative recovery</td>
</tr>
<tr>
<td>Weiss 2009</td>
<td>Multiple areas</td>
<td>924/975 nm diode</td>
<td>19</td>
<td>Excellent fat reduction in 73.0%; excellent retraction in 64%</td>
</tr>
<tr>
<td>Goldman 2009</td>
<td>Lipoma</td>
<td>1,064 nm Nd:YAG</td>
<td>20</td>
<td>Effective and minimally invasive option</td>
</tr>
<tr>
<td>Woodhall 2009</td>
<td>Multiple areas</td>
<td>1,064 nm Nd:YAG</td>
<td>10</td>
<td>30% more skin retraction with 1,320 nm according to patients’ evaluation</td>
</tr>
<tr>
<td>DiBernardo 2009</td>
<td>Abdomen</td>
<td>1,064/1,320 nm Nd:YAG</td>
<td>20</td>
<td>75% improvement in skin retraction</td>
</tr>
<tr>
<td>McBean 2009</td>
<td>Multiple areas</td>
<td>1,064/1,320 nm Nd:YAG</td>
<td>20</td>
<td>17% experienced skin retraction after 3 months</td>
</tr>
<tr>
<td>Sasaki 2009</td>
<td>Multiple areas</td>
<td>1,064/1,320 nm Nd:YAG</td>
<td>75</td>
<td>18 had skin retraction; neocollagenesis in the histology</td>
</tr>
<tr>
<td>Sasaki 2010</td>
<td>Abdomen</td>
<td>1,064/1,320 nm Nd:YAG</td>
<td>3</td>
<td>80% clinical improvement after 3 months</td>
</tr>
<tr>
<td>Sadick 2010</td>
<td>Flanks</td>
<td>1,064 nm Nd:YAG</td>
<td>10</td>
<td>Histology with remodeling of the collagen after 6 months; 100% would recommend the procedure</td>
</tr>
<tr>
<td>DiBernardo 2010</td>
<td>Abdomen</td>
<td>1,064/1,320 nm Nd:YAG</td>
<td>10</td>
<td>Significantly greater skin tightening with laser lipolysis compared to isolated liposuction</td>
</tr>
<tr>
<td>Goldman 2011</td>
<td>Skin tightening</td>
<td>1,064 nm Nd:YAG</td>
<td>28</td>
<td>Greater skin tightening than traditional liposuction</td>
</tr>
<tr>
<td>DiBernardo 2011</td>
<td>Cellulite</td>
<td>1,440 nm Nd:YAG</td>
<td>10</td>
<td>Effective and long-lasting results</td>
</tr>
<tr>
<td>Stebbins 2011</td>
<td>Lipoma</td>
<td>980 nm diode</td>
<td>1</td>
<td>Effective and minimally invasive technique</td>
</tr>
<tr>
<td>Wolferson 2011</td>
<td>Multiple areas</td>
<td>924/975 nm diode</td>
<td>41</td>
<td>Accumulated energy of 5,000 J/10 cm2 was safe and effective; significant and progressive skin tightening</td>
</tr>
<tr>
<td>Kotlus 2011</td>
<td>Axillary hyperhidrosis</td>
<td>1,320 nm Nd:YAG</td>
<td>1</td>
<td>Satisfactory results in cases that are resistant to other treatments</td>
</tr>
<tr>
<td>Collawn 2011</td>
<td>Multiple areas</td>
<td>1,064/1,320 nm Nd:YAG</td>
<td>72</td>
<td>Effective in the mandibular contour definition; long-lasting results</td>
</tr>
<tr>
<td>Holcomb 2011</td>
<td>Face</td>
<td>1,044 nm Nd:YAG</td>
<td>478</td>
<td>Retrospective study of the facial contour treatment; promising therapy</td>
</tr>
<tr>
<td>Tagliolatto 2011</td>
<td>Multiple areas</td>
<td>924/975 nm diode</td>
<td>120</td>
<td>High satisfaction rate (90%)</td>
</tr>
<tr>
<td>Lecleire 2012</td>
<td>Multiple areas</td>
<td>980 nm diode</td>
<td>359</td>
<td>674 procedures; all patients would undergo the procedure again if necessary</td>
</tr>
<tr>
<td>Moreno-Moraga 2012</td>
<td>Knees</td>
<td>924/975 nm diode</td>
<td>30</td>
<td>Return to daily activities in 0.92 day</td>
</tr>
<tr>
<td>Trelles 2012</td>
<td>Gynecostasia</td>
<td>980 nm diode</td>
<td>28</td>
<td>85.7% of results good and very good</td>
</tr>
<tr>
<td>McMenamim 2012</td>
<td>Face</td>
<td>1,064/1,319 nm Nd:YAG</td>
<td>40</td>
<td>Effective, less invasive, and cost effective compared to surgical face lift</td>
</tr>
<tr>
<td>Kim 2012</td>
<td>Axillary osmidrosis</td>
<td>1,064 nm Nd:YAG</td>
<td>29</td>
<td>Total or partial improvement in mild to moderate cases only (n = 19); 3 burns</td>
</tr>
</tbody>
</table>
mechanism of action. The thermal energy that is released in the application of the laser directly into the subcutaneous layer leads not only to adipocytolysis and the coagulation of vessels, but also to the stimulation and remodeling of the collagen and elastin, with the resulting skin-tightening effect.

The studies published thus far consistently point out the benefits of less intra-operative bleeding, less discomfort, pain, and ecchymosis in the post-operative period, as well as a faster recovery time, less mechanical effort for the surgeon, lower complication rates, and the unique benefit of promoting cutaneous retraction.

Although it is well established as an effective and safe alternative to conventional liposuction, laser lipolysis is still a developing technique. Further studies should be carried out in order to optimize the efficacy and safety of the treatment.

REFERENCES

