Treatment of neurofibromatosis NF-1 with CO₂ laser - Case report

ABSTRACT

Type 1 neurofibromatosis has multiple cutaneous lesions and limited treatment options. CO₂ laser is a useful tool for the removal of neurofibromas, the main source of cosmetic disfigurement for these patients. We present the treatment of neurofibromas with CO₂ laser in a patient over 4.5 years. The patient had lesions with variable diameter, diffusely distributed. After 16 sessions of CO₂ laser, we observed clinical improvement. Although it is a palliative treatment, the cosmetic improvement achieved substantiates the demanded effort and time in view of the psychological gains for the patient.

Keywords: Lasers, Gas; Laser Therapy; Neurofibromatosis 1

INTRODUCTION

Neurofibromatosis type I (NF1), previously known as Von Recklinghausen disease, is a dominant autosomal condition with variable incidence (1:2,500 to 1: 3,000 inhabitants). It results from loss of expression of the NF1 gene, which is responsible for the synthesis of neurofibromin, a protein that plays a role in the mechanisms that regulate cell proliferation. It is observed in all races and is unrelated to gender. Neurofibromatosis type I may involve changes (neurofibromas and cutaneous hyperpigmentation) in multiple systems, including the nervous system, bones and skin. Neurofibromas are benign peripheral nerve tumors that can be observed in 48% of patients at 10 years of age.1-2

The National Institutes of Health (NIH) has established a consensus on the diagnostic criteria for NF1. Two or more of the following findings are needed: six or more café-au-lait patches; two or more cutaneous / subcutaneous neurofibromas or one plexiform neurofibroma; axillary or inguinal ephelides;
Neurofibromatosis

optic glioma; two or more Lisch nodules in the eyes; dysplasia of the sphenoid bone or cortical thinning of long bones and a first degree relative with NF1. Any region of the body can be affected by cutaneous neurofibromas, which can vary in size, number and distribution. Usually they appear at puberty and continue to grow. Deformities can result from the growth of hundreds of cutaneous neurofibromas, leading to social isolation and emotional distress.2

The treatment of this cutaneous alteration is predominantly surgical, however alternative treatments should be considered for patients with multiple lesions – usually above 100 – in whom surgical intervention is not possible or desirable. CO2 laser has been shown to be effective in the treatment of large to medium neurofibromas in large numbers, with similar or better aesthetic outcomes than those obtained with surgical excision. However, evidence of CO2 effectiveness, treatment effects on patients’ satisfaction, and post-treatment recurrence rate are scarce.3-5

The present paper describes the case of a 37-year-old patient bearing hundreds of dermatological lesions of neurofibromatosis type I, treated with CO2 laser for four and a half years, as well as the results achieved.

CASE REPORT

A 37-year-old, single female patient originary from the Brazilian Northeast City of Aracaju (SE) referred dark spots on the body (six in number), from birth. At 23 years of age, she noticed the onset of lesions distributed throughout the integument. She denied family history of this pathology.

Physical examination allowed the observation of numerous papular and nodular cutaneous lesions, with diameters varying from 1.0 to 15.0 mm throughout the integument, mainly the face, neck, cervix and abdomen, and in smaller number in the limbs and dorsum. There was presence of brownish café-au-lait patches on the abdomen, chest, back and lower limbs.

Treatment started at the age of 26, when the patient underwent 23 surgical excisions, having had another 16 lesions removed later on. At the age of 37, 30 additional lesions were resected.

Treatment of lesions with CO2 laser began at 37 years of age.

Procedure
Firstly, a test procedure was performed on three submandibular lesions. Two months after, good healing was observed, with absence of intercurrences and remission of the treated lesions. Thus, the treatment of the remaining lesions was started.

The Laser Pixel CO2 70W, Alma Lasers (Halamish St. Caesarea Industrial Park, Israel) was used with the surgical tip, 2.5w, 10ms on-time, 20ms off-time. Lesions up to 3 mm in size were treated with the handpiece positioned perpendicularly to the surface, with circular movements. Larger lesions were initially cauterized at the periphery and then clamped at the base, with forced extrusion aiming at facilitating their delimitation. Surgical sutures were performed only in lesions larger than 1.0 cm. Post-cauterization curettage of lesions was carried out in the first sessions in order to confirm the complete ablation of the neurofibromas. On average, 50 to 100 lesions were treated per session, depending on their size. (Figure 1)

Sixteen sessions were carried out over four and a half years, with intervals varying from two weeks to ten months. A decision was made for treating a specific region’s lesions per session, prioritizing the body sites of greater visibility (face, neck, forearms, dorsum of the hands), and at a later stage later the chest, abdomen, arms and back. (Figures 2, 3 and 4)

Clinical development
Healing by second intention occurred in two or three weeks. There was no recurrence of the facial lesions; nevertheless there were recurrence of several lesions in the thorax, as well as in the abdominal region due to incomplete cauterization. The scars on the face and thorax remained erythematous for one to four months, developing into hypopigmentation and sometimes into atrophy. There were no additional complications.

DISCUSSION
The standard procedure for the removal of NF1 lesions is surgical excision, which has the advantage of leading to a linear scar. Disadvantages are longer procedure durations and greater risk of bleeding.3-4 In light of this, CO2 laser treatment is more suitable for the removal of large numbers of lesions with reasonable aesthetic outcomes and low risk of complications.6-7

Previous studies have shown that CO2 laser treatment has improved the patients’ self-confidence as well as their social and sexual lives. Algermissen et al.4 reported that depigmented, laser treated scars were more acceptable to patients than scars resulting from surgical excisions, a finding that is in line with the opinion of the patients in the present study.

Table 1 shows a summary of the previously reported physical and psychological benefits of using CO2 laser treatment.

The patient treated by the authors of the present report showed a high level of satisfaction, with hypopigmentation at

Figure 1: Pre and post-treatment (six sessions)
<table>
<thead>
<tr>
<th>Studies</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moreno et al.</td>
<td>82% reported a good level of improvement in symptoms (e.g. pain, pruritus) and social activity 73% reported a good level of improvement in sexual activity 100% reported a good level of improvement in the feeling of despair satisfaction and recommendation rate = 73%</td>
</tr>
<tr>
<td>Algermissen et al.</td>
<td>Most patients reported increased self-confidence and social acceptance</td>
</tr>
<tr>
<td>Chiang et al.</td>
<td>Satisfaction rate = 92% Recommendation rate = 100%</td>
</tr>
</tbody>
</table>

CONCLUSION

Although there is no effective treatment to revert lesions characteristic of NF1, CO₂ laser is an option associated to a high level of patient satisfaction and swiftness in the approach of lesions, allowing to treat a large number of lesions per session, with a low risk of complications.

the treatment sites being the only adverse effect described, suggesting that the treatment with CO₂ laser has great potential in the improvement of the psychological well-being of patients suffering from this pathology. To date, no previous reports with long-term follow-up have been published, as was the case with the present paper.
REFERENCES


DECLARATION OF PARTICIPATION:

Luciane Prado Silva Tavares | ORCID 0000-0002-2410-3843
Approval of the final version of the manuscript, effective participation in the research guidance, intellectual participation in the propaedeutic and / or therapeutic conduct of the cases studied, critical review of the manuscript.

Osterno Potenciano | ORCID 0000-0002-7483-6463
Approval of the final version of the manuscript, effective participation research guidance, intellectual participation in propae-deutic and / or therapeutic approach of cases studied.

Yasmin Pugliesi | ORCID 0000-0002-0630-4980
Study design and planning, preparation and drafting of the manuscript, intellectual participation in the propaedeutic and / or therapeutic approach of the cases studied, critical review of the literature.

Raissa Lelitscewa da Bela Cruz Faria | ORCID 0000-0002-3925-9736
Preparation and drafting of the manuscript; data collection, analysis and interpretation; critical review of the literature.

Nathalia Lelitscewa da Bela Cruz Potenciano | ORCID 0000-0002-8252
Preparation and drafting of the manuscript; data collection, analysis and interpretation; critical review of the literature.

Lara Silva Paixão | ORCID 0000-0001-7694-0531
Statistical analysis, preparation and drafting of the manuscript; data collection, analysis and interpretation; critical review of the literature.