Criocirurgia no tratamento do tecido de granulação hipetrófico nas feridas cutâneas

Cryosurgery in the treatment of hypertrophic granulation tissue in cutaneous wounds

DOI: http://dx.doi.org/10.5935/scd1984-8773.201791961

RESUMO

Introdução: A criocirurgia é uma forma segura e eficaz de tratamento que utiliza o nitrogênio líquido para destruição tecidual.

Objetivo: Demonstrar a eficiência da criocirurgia no tratamento do tecido de granulação hipertrófico nas feridas cutâneas.

Métodos: As feridas com tecido de granulação hipertrófico foram tratadas com o nitrogênio em spray aplicado a uma distância de 5cm da área em ângulo de 90°.O tempo de congelamento foi de 02 ciclos de 05 segundos e o número de sessões variou de 01 ou 03. A avaliação dos resultados foi feita através de comparação semanal, clínica e fotográfica, alem de mensuração da área das feridas e do tecido de granulação hipertrófico, através de um planímetro, até que se completasse o processo de cicatrização. Os resultados foram analisados estatisticamente.

Resultados: Foram tratados 20 pacientes com feridas cutâneas localizadas na cabeça, tronco e membros. A média do percentual de redução semanal em relação à área inicial foi de 32,5%. Os resultados tiveram significância estatística.

Conclusões: A criocirurgia é um método prático, de baixo custo e pouco invasivo, podendo ser indicada para o tratamento do tecido de granulação hipertrófico nas feridas cutâneas.

Palavras-chave: tecido de granulação; criocirurgia; terapêutica

ABSTRACT

Introduction: Cryosurgery is a safe and effective treatment modality that uses liquid nitrogen for tissue destruction.

Objective: To demonstrate the effectiveness of cryosurgery in the treatment of hypertrophic granulation tissue in cutaneous wounds.

Methods: Cutaneous wounds with hypertrophic granulation tissue were treated with the nitrogen spray applied from a distance of 5cm from the area to be treated, at a 90° angle. The freezing time was two 5-second cycles and the number of sessions ranged from 1 to 3. The assessments of results were based on weekly clinical and photographic comparisons, as well on the measurement of the wound's and hypertrophic granulation tissue's areas using a planimeter, up until the healing process was completed. The results were statistically analyzed.

Results: Twenty patients with cutaneous wounds located on the head, trunk and limbs were treated. The average weekly percentage reduction compared to the baseline area was 32.5%. The results were statistically significant.

Conclusions: Cryosurgery is a practical, cost effective and non-invasive method and can be indicated for the treatment of hypertrophic granulation tissue in cutaneous wounds.

Keywords: granulation tissue; cryosurgery; therapeutics

Artigo Original

Autor:

Carlos Augusto Zanardini Pereira¹ Ivo Acir Chermicoski² Valéria Zanela Franzon³ Karina Hubner⁴ Miguel Olímpio Anastácio Junior⁵ Ionam Carlos Benazzi⁵

- Diretor Presidente da Fundação Pró-Hansen – Curitiba (PR), Brasil.
- ² Diretor de ensino e pesquisa e médico dermatologista da Fundação Pró-Hansen – Curitiba (PR), Brasil.
- ³ Professora da disciplina de Dermatologia da Pontifícia Universidade Católica do Paraná (PUCPR); Médica Dermatologista da Fundação Pró-Hansen – Curitiba (PR), Brasil.
- Diretora de assistência Médico Social e médica da Fundação Pró-Hansen – Curitiba (PR), Brasil.
- Médico da Fundação Pró-Hansen
 Curitiba (PR), Brasil.

Correspondência para:

Carlos Augusto Zanardini Pereira Rua Fernando Amaro, 1116 / Cristo Rei 80045-380 – Curitiba - PR **E-mail:**carloszpereira@brturbo.com.br

Data de recebimento: 04/01/2017 Data de aprovação: 27/02/2017

Trabalho realizado na Fundação Pró-Hansen – Curitiba (PR), Brasil.

Suporte Financeiro: Nenhum Conflito de Interesses: Nenhum

INTRODUÇÃO

Para que ocorra a cicatrização de uma ferida cutânea é importante a presença do tecido de granulação e a reepitelização. O tecido de granulação substitui células que perderam sua função. Ocorre em situações fisiológicas ou devido a múltiplas condições patológicas no organismo. Entretanto, em alguns casos, a produção do tecido de granulação hipertrófico (TGH), que se desenvolve além da superfície da ferida, resultando numa massa elevada, ou pedúnculo, dificulta a cicatrização de várias maneiras; -impedindo a migração das células epiteliais na superfície da ferida; aumentando o risco de infecção ou causando dor, desconforto e dificuldade na cicatrização-.1 A criocirurgia é uma forma de tratamento que utiliza o nitrogênio líquido, que se tornou disponível comercialmente em 1940. Desde então tem sido comumente utilizada no congelamento de neoplasias de pele devido à sua segurança e efetividade.² O objetivo deste trabalho é demonstrar a eficiência da criocirurgia no tratamento do TGH nas feridas cutâneas.

MÉTODOS

Realizou-se um estudo retrospectivo, com consulta aos prontuários de 20 pacientes provenientes do ambulatório de dermatologia da Fundação Pró-Hansen em Curitiba Paraná, Brasil, portadores de feridas cutâneas com TGH, decorrentes de úlcera de membros inferiores e de feridas cirúrgicas deixadas para cicatrizar por segunda intenção, de 2012 a 2014. Os pacientes que aceitaram participar do trabalho assinaram o termo de consentimento livre e esclarecido e o formulário de consentimento para fotografias. Os critérios de exclusão foram os portadores de coagulopatias graves, infecção local, diabetes descompensada, criofibrinogenemia, crioglobulinemia, tromboflebite, trombose venosa profunda e de feridas com neoplasia maligna.

No estudo foi utilizado o aparelho Cry-ac-3-Brymil Corporation, USA for Alcon Pharmaceuticals , Cham, Switzerland, com a técnica do spray com a ponteira(A) de maior diâmetro.(Figura 1)

O nitrogênio foi aplicado a uma distância de aproximadamente 5cm da área do TGH a um ângulo de 90°.O tempo de congelamento foi de aproximadamente 02 ciclos de 05 segundos

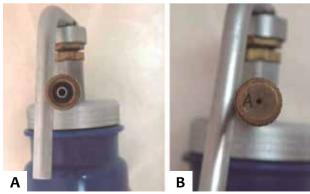


FIGURA 1: A - aparelho Cry-ac-3-Brymil, B - instalada ponteira de maior diâmetro

conforme a área a ser congelada e o número de sessões variou de 01 ou 03. Lesões extensas foram divididas em quadrantes para a aplicação do nitrogênio líquido, sempre limitada ao TGH, evitando-se assim a interferência na migração dos queratinócitos para o centro da ferida. Na presença bordas fibrosadas, foi realizado desbridamento cirúrgico.

O procedimento foi realizado sempre pelo mesmo Dermatologista.

No período pós-operatório os pacientes realizaram curativos com pomada de neomicina e bacitracina, trocados 02 vezes ao dia após limpeza com soro fisiológico. Nas feridas localizadas em membros inferiores o paciente foi orientado para fazer curativo com atadura de crepom para contensão do exsudato e de pequenos sangramentos ocasionais.

A avaliação dos resultados foi feita semanalmente, até a cicatrização total, através de observação clínica, documentação fotográfica e mensuração da área das feridas e do TGH, com decalque que posteriormente foi analisado através do planímetro polar (Fa.OTT, type 16, Kempten, West Germany. O aparelho é constituído por duas hastes metálicas articuladas que se unem por um disco contador. A extremidade livre de uma das hastes é mantida fixa, enquanto a extremidade livre da segunda haste é deslocada sobre o perímetro da superficie plana a ser medida, no caso o decalque, permitindo o cálculo da área de cada lesão.

Na análise estatística os resultados de variáveis quantitativas foram descritos por médias, medianas, valores mínimos, valores máximos e desvios padrões. Variáveis qualitativas foram descritas por frequências e percentuais. Para a comparação de dois grupos em relação às variáveis quantitativas foi considerado o teste não-paramétrico de Mann-Whitney. A associação entre variáveis as quantitativas foi avaliada estimando-se o coeficiente de correlação de Spearman. Valores de p<0,05 indicaram significância estatística. Os dados foram analisados com o programa computacional IBM SPSS v.20.0.

RESULTADOS

Neste trabalho descrevem-se os resultados em vinte indivíduos portadores de feridas cutâneas com TGH (07 do sexo masculino e 13 do sexo feminino), apresentando média de idade de 60,1 anos. A idade mínima foi de 37 anos e a máxima de 86.(Tabela 1)

A média das áreas das feridas foi de 28,6cm² sendo a maior de 157,1 cm² em membros inferiores e a menor de 1,2cm² na região da cabeça. A média das áreas do TGH foi de 8 cm², sendo a maior de 37,7 cm² em membros inferiores e a menor de 1,2cm² na cabeça. A cicatrização mais rápida foi de 7 dias em lesão da região lombar, provavelmente por ter sido afastado o fator desencadeante, eczema de contato pelo esparadrapo; e o maior tempo de cicatrização ocorreu com lesões em membros inferiores. O número de sessões variou de 1 a 3. A média de redução de área por semana foi de 4,4 cm², sendo a mínima de 0,63 cm² e a máxima de 13,1cm². A média do percentual de redução por semana em relação à área inicial foi de 32,5%, variando de 8,3 % a 100%. (Tabelas 1 e 2) . Os resultados

				T/		os dos pacien				
Paciente No.	Sexo	Idade em anos	Sitio anatômico	Etiologia	Área da ferida cm²	Duração em semanas	Área do TGH cm²	N° Sessões de criocirurgia	Resultado Terapêutico TGH	Tempo de cicatrização da ferida em semanas
01	М	74	Cabeça	Excisião de carcinoma basocelular	9,43	04	9,43	01	CURADO	03
02	М	46	Cabeça	Excisão de Nevo sebáceo	42,4	08	15,7	02	CURADO	04
03	F	49	Membro Inferior	Úlcera de perna	21,99	08	3,14	01	CURADO	03
04	F	59	Cabeça	Excisão de carcinoma basocelular	12,56	03	10,18	01	CURADO	03
05	F	72	Cabeça	Excisão de carcinoma basocelular	11,30	04	5,65	01	CURADO	03
06	М	59	Cabeça	Excisão de carcinoma basocelular	6,28	04	6,28	01	CURADO	02
07	F	70	Membro Inferior	Excisião de carcinoma	14,85	04	1,57	02	CURADO	04
08	F	63	Cabeça	espinocelular Excisão de carcinoma basocelular	1,2	04	1,2	01	CURADO	02
09	F	37	Membro superior	Excisião de verrugas virais	4,71	03	4,71	01	CURADO	02
10	М	47	Membro Inferior	Mal perfurante	19,6	16	3,14	02	CURADO	12
11	F	61	Membro Inferior	Pioderma gangrenoso	30,52	20	4,89	02	CURADO	12
12	F	40	Tronco	Excisão de ceratose seborreica	1,9	04	1,9	01	CURADO	02
13	F	48	Tronco	Excisião de nevo melanocítico	2,54	03	2,54	01	CURADO	02
14	М	66	Membro Inferior	Excisão de carcinoma espinocelular	157,0	08	7,95	02	CURADO	12
15	F	43	Tronco	Excisão de ceratose seborreica	3,14	03	3,14	01	CURADO	01
16	F	86	Membro Inferior	Úlcera de perna	28,27	24	19,63	03	CURADO	08
17	М	75	Membro Inferior	Úlcera de perna	6,28	04	6,28	01	CURADO	02
18	М	56	Membro Inferior	Úlcera de perna	75,4	24	37,7	03	CURADO	08
19	F	81	Membro Inferior	Mal perfurante plantar	9,42	28	9,42	02	CURADO	12
20	F	69	Mebro Inferior	Úlcera de perna	113,1	48	6,28	02	CURADO	12

TGH: Tecido de granulação hipertrófico

TABELA 2: Estatísticas descritivas gerais da amostra								
	N.	Média	Mediana	Mínimo	Máximo	Desvio padrão		
Idade (anos)	20	60,1	60,0	37,0	86,0	14,1		
Área da ferida (cm2)	20	28,6	11,9	1,2	157,0	41,0		
Duração (semanas)	20	11,2	4,0	3,0	48,0	12,0		
Área do TGH (cm2)	20	8,0	6,0	1,2	37,7	8,4		
N° sessões de criocirurgia	20	1,6	1,0	1,0	3,0	0,7		
Tempo de cicatrização da ferida (semanas)	20	5,5	3,0	1,0	12,0	4,3		
Redução por semana (cm2)	20	4,4	3,1	0,63	13,1	3,6		
Percentual de redução por semana em relação à área inicial	20	32,5	33,3	8,3	100,0	23,2		

TGH: Tecido de granulação hipertrófico

indicam que houve significância estatística para estas associações tornando significativas a comparações casadas entre área da ferida com o número de sessões de criocirurgia (p< 0,001), área da ferida com o tempo de cicatrização (p<0,001), duração da ferida com o tempo de cicatrização (p<0,001) e área do TGH com o número de sessões de criocirurgia (0,046). Entretanto os valores do coeficiente de correlação (0,45) sugerem que esta associação não é forte embora estatisticamente significativa. A correlação entre a área do TGH e o tempo de cicatrização da ferida não teve significância estatística (P=0,067) (Tabela 3). O resultado indica que houve significância estatística entre a associação da duração da ferida com o sitio anatômico (p=0,037), o número de sessões de criocirurgia com o sítio anatômico (p=0,048), o tempo de cicatrização da ferida com sítio anatômico (p=0,048) e o percentual de redução da área por semana em relação à área inicial com o sitio anatômico (p=0,036). Não houve significância estatística para a associação entre a área da ferida com o sitio anatômico (p=0,149), área do TGH com o sitio anatômico (p=0,660) e também a associação entre a redução da área da ferida por semana com o sitio anatômico (p=0,961) (Tabela 4).

DISCUSSÃO

Em 1913 , o neurocirurgião americano , Dr. Irving S Cooper foi o primeiro a utilizar a criocirurgia com nitrogênio liquido em tumores cerebrais. Dr. Setrag A. Zacarian em 1967 desenvolveu o dispositivo de mão, chamado Kryospray que popularizou o uso deste equipamento.³

Caracteriza-se pelo baixo custo e rápida recuperação do paciente que pode retornar às suas atividades laborativas em menor tempo, quando comparada a outros métodos terapêuticos. A criocirurgia produz destruição seletiva do tecido comprometido,

e o estroma promove a reparação posterior da ferida. A resistência das fibras de colágeno e da cartilagem ao dano do congelamento, favorece a cicatrização da lesão.⁴

A criocirurgia com nitrogênio líquido tem sido muito utilizada, uma vez que é segura, tem boa efetividade, fácil manuseio, bons resultados terapêuticos e cosméticos e não precisa de anestesia. A rápida perda de calor promove um congelamento das terminações nervosas cutâneas, levando a um efeito pré-anestésico. Esse congelamento gera uma sensação momentânea desconfortável de queimação, que contudo é passageira e autolimitada. A criocirurgia tem sido utilizada para o tratamento de um amplo espectro de doenças que varia desde lesões cutâneas benignas, pré-malignas e malignas. O nitrogênio líquido é considerado o melhor criógeno da atualidade, estimulando também a resposta imunológica.⁵

O congelamento promove cristalização da água intracelular e extracelular culminando na morte da célula. Também ocorre estase vascular que contribui para a necrose tissular. Vale ressaltar que essa destruição do tecido é seletiva. (Figura 2)

Ainda não conhecemos perfeitamente a fisiopatologia da formação do TGH, mas as prováveis etiologias podem ser agrupadas em: natureza inflamatória (tipo 1), causas relacionadas com ambiente oclusivo da ferida (tipo 2) e causas por algum tipo de desequilíbrio celular (tipo 3). Independentemente da causa, é importante excluir a possibilidade de malignidade. O tipo 1 é tratado pela remoção do fator inflamatório ou irritante. Em casos de infecção, é importante que se trate com antibiótico-terapia sistêmica. O tipo 2 responde bem à troca de curativo, geralmente um filme permeável que favorece as trocas gasosas na interface da ferida e curativo. No tipo 3 pode haver causas internas ou externas para o desequilíbrio celular. Se externas,

TABELA 3: Avaliação da associação entre variáveis quantitativas							
	N.	Coef de correl de Spearman	Valor de p				
Área da ferida (cm2) X N° sessões de criocirurgia	20	0,75	<0,001				
Área da ferida (cm2) X tempo de cicatrização da ferida (semanas)	20	0,82	<0,001				
Duração da ferida (semanas) X N° sessões de criocirurgia	20	0,81	<0,001				
Duração da ferida (semanas) X tempo de cicatrização da ferida (semanas)	20	0,84	<0,001				
Área do TGH (cm2) X N° sessões de criocirurgia	20	0,45	0,046				
Área do TGH (cm2) X Tempo de cicatrização da ferida (semanas)	20	0,42	0,067				

TGH: Tecido de granulação hipertrófico

TABELA 4: Comparação de sítios anatômicos em relação a variáveis quantitativas								
Variável	Sítio anatômico	N.	Média	Mediana	Mínimo	Máximo	Desvio padrão	Valor de p*
Área da ferida (cm2)	Cabeça	6	13,9	10,4	1,3	42,4	14,6	
	Membros	11	43,7	22,0	4,71	157,0	50,0	0,149
Duração (semanas)	Cabeça	6	4,5	4,0	3,0	8,0	1,8	
	Membros	11	17,0	16,0	3,0	48,0	13,7	0,037
Área do TGH (cm2)	Cabeça	6	8,1	7,9	1,3	15,7	4,9	
	Membros	11	9,5	6,3	1,6	37,7	10,5	0,660
N° sessões de criocirurgia	Cabeça	6	1,2	1,0	1,0	2,0	0,4	
	Membros	11	1,9	2,0	1,0	3,0	0,7	0,048
Tempo de cicatrização da ferida (semanas)	Cabeça	6	2,8	3,0	2,0	4,0	0,8	
	Membros	11	7,9	8,0	2,0	12,0	4,4	0,048
Redução por semana (cm2)	Cabeça	6	4,2	3,5	0,6	10,6	3,4	
	Membros	11	5,2	3,5	0,79	13	4,0	0,961
Percentual de redução por semana em relação à área inicial	Cabeça	6	37,5	33,3	25,0	50,0	10,2	
	Membros	11	20,5	12,5	8,33	50	16,7	0,036

^{*}Teste não-paramétrico de Mann-Whitney, p<0,05

devem ser tratadas segundo os sinais e sintomas utilizando-se as mesmas estratégias para o tipo 1 e 2; se internas, o tratamento ainda é desconhecido.¹

Outras opções de tratamento citadas na literatura incluem o desbridamento mecânico por *shaving* ou curetagem, a cauterização química, a terapia com laser, o nitrato de prata tópico, o fenol , o sulfato de cobre e o cloreto de alumínio.⁶⁻⁹

A remoção mecânica da hipergranulação pode causar o retorno à fase inflamatória formando-se uma nova ferida, enquanto que a aplicação de agentes cáusticos podem causar dor.⁶ Por sua vez, o nitrato de prata se utilizado com frequência em grandes áreas, pode causar metahemoglobinemia e hiponatremia.^{10,11}

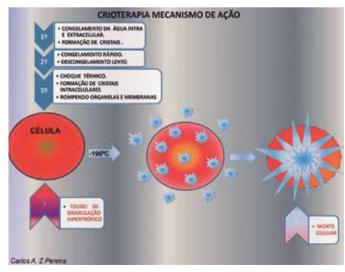


FIGURA 2: Representação esquemática do nitrogênio líquido congelando o TGH

O uso do imiquimod também foi relatado no tratamento do TGH em mal perfurante plantar, ocorrendo a cicatrização completa após o período de 18 semanas.¹²

O fato de haver várias opções terapêuticas por diferentes métodos demonstra que o TGH é um problema terapêutico, com escassez de relatos científicos sobre os avanços na área.⁶

Em nosso trabalho foi possível observar que o TGH interfere no processo de cicatrização das feridas cutâneas, dificultando a reepitelização, devido ao relevo que produz no centro da ferida, o qual interfere na migração dos queratinócitos. O TGH, quando não tratado poder permanecer por várias semanas dificultando a cicatrização e produzindo grande volume de exsudato amarelado. Após o tratamento com a criocirurgia observamos na primeira semana a melhora da cicatrização pelo aplainamento do leito da ferida, o que facilita a reepitelização. (Figura 3)

Pacientes com feridas extensas em membros inferiores

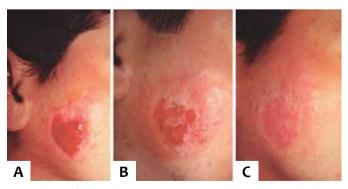


FIGURA 3: A - ferida cirúrgica com TGH, B - reepitelização parcial após o1 sessão de criocirurgia, C - reepitelização completa da ferida em 04 semanas após 02 sessões de criocirurgia

^{*}TGH: tecido de granulação hipertrófico.

^{*} Em função do pequeno número de casos com ferida no tórax (03 casos), este sítio anatômico não foi analisado na comparação

C - Após 02 sessões de criocirurgia, com a reepitelização completa da ferida em 12 semanas

FIGURA 4: A - Ferida cirúrgica com TGH, B - Aplicação do nitrogênio líquido,

com TGH, referem muita dor local. Após o início da reepitelização, com a pele recobrindo a ferida, ocorre a redução do exsudato e da sensação dolorosa. (Figura 4A-4B-4C). Em nosso estudo, estes sinais foram observados em 03 pacientes com presença do TGH na ferida cirúrgica, onde o curativo no periodo pós-operatório foi realizado com creme de antibióticos e clostebol, que tem ação cicatrizante.

Nas feridas cirúrgicas resultantes da exérese de neoplasias malignas, deixadas para cicatrizar por segunda intenção, que evoluem com TGH, é necessário avaliar a margem de segurança no exame histopatológico conferindo se houve a excisão total do tumor.

Nos casos de úlceras de perna que apresentam infecção é importante solicitar a cultura e antibiograma, antes do início da antibioticoterapia.

O tecido de granulação é importante no processo de cicatrização de feridas de espessura total, mas quando se torna hipertrófico deve ser diagnosticado e tratado o mais precocemente possível. As feridas cirúrgicas de espessura parcial, resultantes da técnica da excisão por shaving, podem cicatrizar com a formação de TGH, como ocorreu nos pacientes que tiveram excisão de nevo sebáceo e de nevo melanocítico (Tabela 1).

Não se observam complicações com a técnica da criocirurgia, desde que os pacientes observem as recomendações recebidas, fazendo a limpeza da ferida e os curativos com a pomada recomendada.

O tratamento das úlceras em membros inferiores acompanhadas de TGH é difícil e prolongado, principalmente se a etiologia for o pioderma gangrenoso ou o mal perfurante plantar decorrente da neuropatia da hanseníase. Nestes casos podemos fazer o uso da criocirurgia com antibioticoterapia e tratar a doença de base. No presente estudo, as feridas que apresentaram maior tempo de cicatrização estavam localizadas nos membros inferiores (Tabelas 1 e 4).

CONCLUSÕES

É importante detectar nas fases iniciais a formação do tecido de granulação hipertrófico para evitar longos tratamentos que geram despesas e desconforto para o paciente. A criocirúrgia é um método prático, de baixo custo, pouco invasivo, com baixa incidência de complicações e com excelente resultado terapêutico, podendo ser indicado para o tratamento do TGH nas feridas cutâneas.

REFERÊNCIAS

- Vuolo J. Hypergranulation: exploring possible management options. Br J Nurs. 2010;19(6):S4, S6-8.
- Zimmerman EE, Crawford P.Cutaneous Cryosurgery. Am Fam Physician. 2012;86(12):1118-1124.
- Cooper SM, Damber RPR .The history of cryosurgery . J R Soc Med. 2001;94(4):196-201.
- Gage AA, Baust JM, Baust JG. Experimental cryosurgery investigations in vivo. Cryobiology. 2009;59(3):229-43.
- Moraes AM, Velho PENF, Magalhães RF. Criocirurgia com nitrogênio líquido e as dermatoses infecciosas. An Bras Dermatol. 2008;83(4):285-298.
- Harris A, Rolstad BS. Hypergranulation tissue: a nontraumatic method of management. Ostomy Wound Manage. 1994;40(5):20-30.
- 7. Hawkins-Bradley B, Walden M. Treatment of a nonhealing wound with hypergranulation tissue and rolled edges. J Wound Ostomy Continence Nur. 2002;29(6):320-4.
- Semchyshyn NL. Dermatologic surgical complications. Medscape [Internet]. 2016 Sep [cited 2009 Sep 25]. Available from: http://emedicine. medscape.com/article/1128404-overview#a1
- Stevens NM, Shultz T, Mizner RL. Gersh M. Treatment in an out-patient setting for a patient with an infected, surgical wound with hypergranulation tissue. Int J Low ExtremWounds. 2009;8(1):37-44.
- 10. Rollins H. Hypergranulation tissue at gastrostomy sites. J Wound Care. 2000;9(3):127-9.
- Dealey C. The Care of Wounds: a guide for nurses. 3nd ed. Oxford: Wiley -Blackwell; 2008.
- Krishnaprasad IN, Soumya V, Abdulgafoor S. Management of over-granulation in a diabetic foot ulcer . IJPMR 2013;24(1):19-22.